
Intelligent Automation for Accelerating the Repair
of Software Build Failures

Gengyi Sun
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

gengyi.sun@uwaterloo.ca

Abstract—Society has an insatiable hunger for software. It
keeps our planes in the air, our cars on the road, and even guides
surgical procedures. Yet as software enriches more and more
aspects of our lives, its complexity (and that of its maintenance)
presents an ever-growing challenge. To manage the development
of complex software, build systems are widely adopted to perform
routine checks after code submissions. The build system lies
at the core of the software delivery process, responsible for
transforming source code (pseudo-English machine instructions)
into release-ready software that users can install or interact with.
While build systems provide numerous benefits, the rapid pace
of modern software development generates heavy workloads for
them to process. Executing builds requires substantial computing
resources and energy, and when a build fails, the consequences
ripple throughout the development process. Failures not only
block others from validating their work, but also necessitate
repeated executions, incurring more resource consumption. In
a case study of a software organization, 18% of builds failed,
with an average of 56 minutes spent resolving each failure.
Such inefficiencies contribute to wasted computing resources and
energy and hinder productivity, emphasizing the need for more
cost-effective solutions.

This proposal aims to develop automated methods for repair-
ing build failures by addressing four key areas: (1) compilation
errors, (2) dependency-induced errors, (3) test execution errors,
and (4) a comprehensive solution that integrates these aspects.
The approach involves parsing and analyzing build action traces
to identify root causes, cataloging and exploiting patterns of
reusable build fixes to enable rapid resolution, and leverag-
ing machine learning approaches, such as the fine-tuning and
prompting of large language models, to assist developers in re-
implementing failed test cases. These innovations will streamline
the build repair process, reducing delays and improving overall
development efficiency.

Index Terms—build system, automated program repair

I. INTRODUCTION

Modern software is multi-faceted. As modern software
provides more functionalities, software systems are becoming
larger and more complex. They often incorporate a wide range
of artifacts, from source code in different languages to various
types of non-code artifacts. Our recent work also shows that
97% of a video game repository with over a million files are
non-code files [18], highlighting the scale and complexity of
modern software. To weave these artifacts into a cohesive
whole, the build system is responsible for compiling appli-
cation code into binaries, managing dependencies, executing

test cases, and creating deliverables. These benefits come at
the cost of a heavy workload that incurs the consumption of
expensive computing resources. Despite the growing size and
complexity of software systems, there is also an increasing
demand for faster delivery. Our recent work has shown that
the average build time for a video game project at Ubisoft is
20 minutes and 16% of the builds fail [18]. Failures not only
block others from validating their work but also necessitate
repeated executions, incurring more resource consumption. In
addition to the computing resources, energy, and time spent
executing the build job, fixing build failures is also time-
consuming [5]–[7], [20]. Currently, build failures are typically
resolved manually. In a case study at a large organization, 18%
of builds failed, with an average of 56 minutes spent fixing
these failures [11]. In accelerating the build process, we aim
to reduce inefficiencies that contribute to wasted computing
resources and energy and hinder productivity, highlighting the
need for automated solutions to address build failures in the
software industry.

Prior studies reveal that the top three reasons for build
failures in the open-source community are compilation errors,
dependency issues, and test execution errors [21]. Extensive
work has shown that manually addressing the build failure can
be challenging and time-consuming [5]–[7], [20].

Although various methods for fixing compilation errors,
dependency issues, and test execution errors have been in-
dividually studied, there is limited research on an integrated
approach to handling build failures as a whole. Existing work
typically evaluates fixes at one stage of the build process, but
changes at one stage can introduce new errors in later stages
due to the inter-dependencies within the build pipeline. For
example, updating dependencies may resolve a dependency-
induced failure, but also introduce a new failure due to
a version incompatibility. Current approaches fall short of
addressing these cross-stage issues.

II. RESEARCH OBJECTIVES

To develop a comprehensive automatic build repair system,
we propose the following research objectives (ROs):



RO1) Formulate automatic build repair strategies for compi-
lation errors

In open-source projects, 9.1% of build failures are caused by
compilation errors [21] which tend to be syntactical in nature
and follow recurrent patterns [15]. Previous work has explored
learning-based approaches to address this issue [1], [3], [12],
[15], [17], [22]. However, existing work does not validate the
generated fixes for compilation errors in the subsequent build
stages. A compilable program that behaves in an unexpected
way may fail the build at the subsequent testing stage, or
worse, allow defective software to be released. Thus, repairing
compilation errors alone does not guarantee a successful build.
Therefore, when evaluating the required accuracy, we will also
consider whether the fix generates new failures in subsequent
build stages.

To address RO1, we will leverage natural language process-
ing techniques with fine-tuning to accommodate the software
engineering domain knowledge to consider test specifications
when generating fixes for compilation errors.

RO2) Formulate automatic build repair strategies for depen-
dency errors

Dependency errors account for 7.1% of build failures in
open-source projects [21]. Prior efforts have focused on au-
tomating the repair of dependency-related failures by injecting
or updating third-party libraries [14]. However, these methods
can only successfully repair 46% to 54% of the studied
broken builds, indicating that there is potential room for further
improvement in this area.

To address RO2, we will propose an ensemble approach for
repairing dependency errors by incorporating machine learning
approaches to complement the existing heuristic approach.

RO3) Formulate automatic build repair strategies for test
execution errors

As the most frequent cause of failing builds, test execution
failures have been the focus of extensive research. Test execu-
tion failures are the leading cause of build failures, responsible
for 41.3% of failures in open-source communities [21]. Unlike
syntactically incorrect compilation errors, test cases verify
if the code behaves as expected (i.e., semantically correct).
Additionally, fixing test execution errors can generate fixes
that introduce compilation errors [8], [23], [24]. Existing work
employs an iterative approach that compiles and tests these
candidate fixes until a true fix is found [24].

To address RO3, in addition to the iterative validations,
we will develop grammar-constrained methods that take both
syntax and semantics into account to reduce the generation of
candidate fixes that could not be compiled.

RO4) Formulate integrated strategies for an automated build
repair solution

Prior work has focused on fixing compilation errors [1],
[3], [12], [15], [17], [22], test cases [8], [9], [13], or specific
types of defects in isolation (e.g., build scripts [4], [14]). At the
build level, researchers have proposed approaches that provide

hints to help developers to fix build failures [19], [20]. To
the best of our knowledge, there have been no attempts to
integrate these efforts to repair the entire build holistically. To
further automate the build-repairing process, a comprehensive
approach should address all aspects of build failures and
restore the build to a functional state in full automation.

To address RO4, our approach will fix build errors se-
quentially, addressing issues in the order they occur (i.e.,
compilation, dependency specifications, test executions) while
iterating through the stages to ensure a complete repair.

III. EXPECTED CONTRIBUTIONS

We will address build failures with learning-based and
template-based approaches. With large language models
demonstrating promising performance, research increasingly
leverages learning-based techniques for automatic program
repair [1], [3], [8], [9], [12], [13], [15], [17], [22], whereas
in resource-constrained scenarios, template-based methods can
be adopted to balance performance and resource demands.

We will construct datasets that contain all types of build
failures to train and evaluate the integrated system. By mining
the wealth of open-source repositories hosted on social coding
platforms (e.g., GitHub), we can reproduce a large sample of
build invocations to construct a dataset containing compilation-
related, dependency-induced, and test-related build failures
and their corresponding fixes. Off-the-shelf datasets such as
DeepFix [2] for compilation errors, and Defects4J [10] for test
execution errors can be used to train and test our task-specific
components. However, there are limited existing benchmarks
for dependency-induced failures and fixes. To address this
shortfall of data, we will start studying the dependency-
induced build failures by constructing a public dataset to fill
in the gap.

Using the collected data, we will conduct an empirical
analysis to understand developer-generated fixes and propose
models for each type of build failure. These models will
consider the interdependencies between different stages of
the build process. In resource-constrained scenarios, we can
propose template-based fixing approaches that leverage the
empirical analysis knowledge.

IV. EVALUATION CRITERIA

Fixes can be validated in several ways. Some approaches
compare generated fixes to the ground truth, while others argue
that multiple valid fixes exist for a single failure [3]. At the
test level, executable datasets such as RunBugRun [16] can be
adopted to validate the diverse candidate fixes. At the build
level, the ultimate validation is whether the build succeeds
after applying the fix.

In addition to the existing effectiveness metrics in measuring
repair strategies, we will propose new metrics at the build
level. These include the number of builds fully fixed, builds
fixed at each stage, and the median number of test cases
repaired in partially fixed builds. Efficiency will be measured
by the time taken to fix the entire build and the time taken to
resolve failures at each stage.



REFERENCES

[1] Kumar Abhinav, Vijaya Sharvani, Alpana Dubey, Meenakshi D’Souza,
Nitish Bhardwaj, Sakshi Jain, and Veenu Arora. RepairNet: Contextual
Sequence-to-Sequence Network for Automated Program Repair, volume
12748 of Lecture Notes in Computer Science, page 3–15. Springer
International Publishing, Cham, 2021.

[2] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:
fixing common c language errors by deep learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17,
page 1345–1351. AAAI Press, 2017.

[3] Hossein Hajipour, Apratim Bhattacharyya, and Mario Fritz. Sample-
fix: Learning to correct programs by sampling diverse fixes. CoRR,
abs/1906.10502, 2019.

[4] Foyzul Hassan and Xiaoyin Wang. Hirebuild: an automatic approach
to history-driven repair of build scripts. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, page
1078–1089, New York, NY, USA, 2018. Association for Computing
Machinery.

[5] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and
Danny Dig. Trade-offs in continuous integration: assurance, security, and
flexibility. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, page 197–207, New York,
NY, USA, 2017. Association for Computing Machinery.

[6] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and
Danny Dig. Usage, costs, and benefits of continuous integration in
open-source projects. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’16,
page 426–437, New York, NY, USA, 2016. Association for Computing
Machinery.

[7] Yang Hong, Chakkrit Tantithamthavorn, Jirat Pasuksmit, Patanamon
Thongtanunam, Arik Friedman, Xing Zhao, and Anton Krasikov. Prac-
titioners’ challenges and perceptions of ci build failure predictions at
atlassian, 2024.

[8] Li Huang, Bertrand Meyer, Ilgiz Mustafin, and Manuel Oriol. Execution-
free program repair. (arXiv:2405.01309), May 2024. arXiv:2405.01309
[cs].

[9] Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware neural
machine translation for automatic program repair. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), page
1161–1173, Madrid, ES, May 2021. IEEE.

[10] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, page 437–440, New York, NY, USA, 2014.
Association for Computing Machinery.

[11] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do
automated builds break? an empirical study. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 41–50, 2014.

[12] Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie,
Kai Chen, and Yang Liu. Transrepair: Context-aware program repair for
compilation errors. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’22, New York,
NY, USA, 2023. Association for Computing Machinery.

[13] Yi Li, Shaohua Wang, and Tien N. Nguyen. Dear: A novel deep learning-
based approach for automated program repair. (arXiv:2205.01859), May
2022. arXiv:2205.01859 [cs].

[14] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically
Repairing Dependency-Related Build Breakage. In Proc. of the Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), page 106–117, 2018.

[15] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward
Aftandilian. DeepDelta: Learning to repair compilation errors. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 925–936, Tallinn Estonia, August 2019. ACM.

[16] Julian Aron Prenner and Romain Robbes. Runbugrun – an executable
dataset for automated program repair, 2023.

[17] HyeonTae Seo, Yo-Sub Han, and Sang-Ki Ko. Multifix: Learning to
repair multiple errors by optimal alignment learning. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Findings of the Association for Computational Linguistics: EMNLP
2021, page 4850–4855, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[18] Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and
Shane McIntosh. Code Impact Beyond Disciplinary Boundaries: Con-
structing a Multidisciplinary Dependency Graph and Analyzing Cross-
Boundary Impact. In Proc. of the International Conference on Software
Engineering (ICSE), page To appear, 2024.

[19] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C.
Gall. Un-break my build: assisting developers with build repair hints.
In Proceedings of the 26th Conference on Program Comprehension,
ICPC ’18, page 41–51, New York, NY, USA, 2018. Association for
Computing Machinery.

[20] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C.
Gall. Every build you break: developer-oriented assistance for build
failure resolution. Empirical Software Engineering, 25(3):2218–2257,
May 2020.

[21] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Ro-
mano, Philipp Leitner, Andy Zaidman, Massimiliano Di Penta, and
Sebastiano Panichella. A tale of ci build failures: An open source
and a financial organization perspective. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
183–193, 2017.

[22] Zhenyu Wu, Deheng Yang, Yan Lei, Huan Xie, Minghua Tang, and
Maojin Li. Labelrepair: Sequence Labelling for Compilation Errors
Repair. In 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 860–871, March 2024.

[23] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus.
Selfapr: Self-supervised program repair with test execution diagnostics.
In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’22. ACM, October 2022.

[24] He Ye and Martin Monperrus. Iter: Iterative neural repair for multi-
location patches. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New York, NY, USA,
2024. Association for Computing Machinery.


